

Home Search Collections Journals About Contact us My IOPscience

Core-hole screening in metallic magnesium

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1989 J. Phys.: Condens. Matter 1 SB263 (http://iopscience.iop.org/0953-8984/1/SB/068)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 27/05/2010 at 11:12

Please note that terms and conditions apply.

Core-hole screening in metallic magnesium

A D Laine[†], G Cubiotti[‡] and P Weightman[†]

 Department of Physics and Surface Science Research Centre, University of Liverpool, Liverpool L69 3BX, UK
Istituto di Fisica Teorica, Universita, Messina, Italy

Received 23 March 1989

Abstract. An atomic-like formalism has been used to calculate the KL_1V Auger transition rate for magnesium as a function of the initial-state valence configuration. The transition rate for KL_1V processes involving valence s and p holes, KL_1V_s and KL_1V_p , have been calculated for several valence configurations. A comparison between the theoretical and the experimental values of the KL_1V_s ; KL_1V_p ratio suggests that a 1s core hole in metallic magnesium is screened by a valence charge of p character.

The KL₁V Auger profile of solid magnesium consists of two peaks of similar intensity, the one at higher energy arising from valence p electrons, that at lower energy from valence s electrons. The s-like part of the profile in the presence of a core hole shows that the s density of states is very different from that of the ground state. The ratio of KL_{2,3}V to KL₁V in the atom has been calculated previously [1]. We have extended the formalism [2] in order to apply it to the solid, and have calculated the relative intensities of the s and p contributions to the KL₁V spectrum individually. In performing these calculations, we must make a choice of screening configuration surrounding the 1s hole, and we have made the choices $3s^23p^0$, $3s^{1}3p^1$, $3s^23p^1$, and $3s^{1}3p^2$, which correspond to the atomic ground state, the metallic ground state, s-like screening and p-like screening. The calculated values and ratios are shown in table 1.

The principal point to notice from table 1 is that the $3s^{1}3p^{2}$ initial-state screening configuration (p screening) is the only one that gives a realistic $KL_{1}V_{s}:KL_{1}V_{p}$ intensity ratio, 0.83, and that the s screening configuration, which has previously been supposed

Initial-state valence configuration	KL ₁ V _s	KL ₁ V _p	KL_1V_s/KL_1V_p
3s ² 3p ⁰	1.27		· · · · · · · · · · · · · · · · · · ·
3s ¹ 3p ¹	0.64	0.38	1.64
3s ² 3p ¹	1.27	0.38	3.34
3s ¹ 3p ²	1.91	2.31	0.83

Table 1. Calculated KL₁V Auger transition rates for Mg as related to the core-hole screening configuration. (The rates are given in units of 10^{-4} /all of time.)

to be correct [3], yields the ratio furthest removed from the experimental value. From this, we conclude that a 1s core hole in magnesium is predominantly screened by a valence charge of p character.

References

- [1] McGuire E J 1969 Phys. Rev. 185 1-6
- McGuire E J 1970 Phys. Rev. A 2 273-8
- [2] Cubiotti G, Laine A D and Weightman P 1989 J. Phys.: Condens. Matter at press
- [3] Jennison D R, Weightman P, Hannah P H and Davies M 1984 J. Phys. C: Solid State Phys. 17 3701-10